Great Expectations Integration | CONFIDENTIAL

GREAT EXPECTATIONS
INTEGRATION GUIDE

Setup • Expectations • Checkpoints • Integration • Reporting

Version 1.0 | January 2026

Table of Contents

1. Overview
Great Expectations (GX) is an open-source Python library for data validation, documentation, and profiling. It integrates well with Fabric Notebooks for comprehensive data quality management.
1.1 Key Concepts
	Concept
	Description

	Expectation
	A declarative assertion about your data

	Suite
	Collection of expectations for a dataset

	Checkpoint
	Executable validation with actions

	Data Docs
	Auto-generated HTML documentation

	Data Context
	Configuration and state management

2. Setup in Fabric
2.1 Installation
In Fabric Notebook
%pip install great_expectations

Import library
import great_expectations as gx
from great_expectations.core.batch import RuntimeBatchRequest
2.2 Initialize Context
Create ephemeral context (no persistent store)
context = gx.get_context()

Or with Lakehouse storage
context = gx.get_context(
 context_root_dir='/lakehouse/default/Files/great_expectations'
)
2.3 Connect to Spark Data
Add Spark datasource
datasource = context.sources.add_spark('fabric_spark')

Add data asset for a table
data_asset = datasource.add_dataframe_asset(
 name='claims_data',
 dataframe=spark.table('silver.claims')
)

3. Creating Expectations
3.1 Common Expectations
	Expectation
	Purpose

	expect_column_to_exist
	Column is present

	expect_column_values_to_not_be_null
	No null values

	expect_column_values_to_be_unique
	All values unique

	expect_column_values_to_be_in_set
	Values in allowed list

	expect_column_values_to_be_between
	Values in range

	expect_column_values_to_match_regex
	Pattern matching

	expect_table_row_count_to_be_between
	Row count check

3.2 Define Expectation Suite
Create expectation suite
suite = context.add_expectation_suite('claims_quality_suite')

Get validator
validator = context.get_validator(
 batch_request=RuntimeBatchRequest(
 datasource_name='fabric_spark',
 data_connector_name='default_runtime_data_connector_name',
 data_asset_name='claims_data',
 runtime_parameters={'batch_data': claims_df},
 batch_identifiers={'batch_id': 'claims_batch'}
),
 expectation_suite_name='claims_quality_suite'
)

Add expectations
validator.expect_column_to_exist('member_id')
validator.expect_column_values_to_not_be_null('member_id')
validator.expect_column_values_to_not_be_null('claim_amount')
validator.expect_column_values_to_be_between('claim_amount', min_value=0)
validator.expect_column_values_to_be_in_set('status', ['PAID','DENIED','PENDING'])

Save suite
validator.save_expectation_suite(discard_failed_expectations=False)

4. Running Validations
4.1 Create Checkpoint
Define checkpoint
checkpoint = context.add_or_update_checkpoint(
 name='claims_checkpoint',
 validations=[{
 'batch_request': {
 'datasource_name': 'fabric_spark',
 'data_asset_name': 'claims_data',
 'runtime_parameters': {'batch_data': claims_df}
 },
 'expectation_suite_name': 'claims_quality_suite'
 }]
)
4.2 Run Checkpoint
Execute validation
results = checkpoint.run()

Check if passed
if results.success:
 print('All validations passed!')
else:
 print('Validation failed')
 # Get failed expectations
 for result in results.run_results.values():
 print(result.get_statistics())
4.3 Integration in Pipeline
In ETL notebook, add validation gate
def run_quality_gate(df, suite_name):
 results = checkpoint.run(
 batch_request={'runtime_parameters': {'batch_data': df}}
)
 if not results.success:
 raise Exception(f'Data quality check failed: {suite_name}')
 return df

Use in pipeline
claims_df = spark.table('bronze.claims')
claims_df = run_quality_gate(claims_df, 'claims_quality_suite')
claims_df.write.saveAsTable('silver.claims')

5. Data Documentation
5.1 Generate Data Docs
Build and view documentation
context.build_data_docs()

In Fabric, save to Lakehouse Files
Access via: /lakehouse/default/Files/great_expectations/uncommitted/data_docs/
5.2 Store Results
Save validation results to Lakehouse
results_df = spark.createDataFrame([
 (str(results.run_id), results.success, str(results.statistics))
], ['run_id', 'success', 'statistics'])

results_df.write.mode('append').saveAsTable('quality.gx_results')

6. Best Practices
6.1 Implementation Tips
1. Start with critical columns (PKs, required fields)
1. Use mostly=1.0 for strict checks, lower for warnings
1. Profile data first to set realistic thresholds
1. Store expectation suites in version control
1. Integrate checkpoints into ETL notebooks
1. Generate Data Docs for documentation
6.2 Healthcare Examples
Member ID format
validator.expect_column_values_to_match_regex(
 'member_id', regex=r'^M[0-9]{9}$')

Valid diagnosis codes
validator.expect_column_values_to_be_in_set(
 'diagnosis_code', value_set=valid_icd10_codes)

Service date not in future
validator.expect_column_values_to_be_between(
 'service_date', max_value=datetime.today())

Appendix: Document Information
	Document Title
	Great Expectations Integration Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
